
The Trust Apocalypse: A Relativistic
Scalar–Vector Plenum Interpretation
An RSVP Field-Theoretic Commentary on McCammon (2025)

Flyxion / RSVP Analysis Division

Abstract
Keiron McCammon’s The Trust Apocalypse (2025) diagnoses the century-

long corrosion of social trust as a three-act sociological drama culminating in in-
formational disintegration. Reinterpreted through the Relativistic Scalar–Vector
Plenum (RSVP) theory, this process expresses a tri-field disequilibrium—loss of
scalar social potential (Φ), vector institutional coherence (v), and the explosion
of informational entropy (S). This essay formalizes McCammon’s historical nar-
rative as an entropic phase transition in the civic field and proposes a restora-
tive dynamics whereby catalytic communities serve as negentropic attractors
re-coupling Φ, v, and S.

1 Foundations of Relativistic Scalar–Vector Plenum (RSVP)
Theory

The Relativistic Scalar–Vector Plenum (RSVP) theory models societal trust as a co-
variant tri-field system embedded in a continuous plenum. The plenum integrates
scalar cohesion Φ, vector institutional flow v, and entropy density S. This structure
converges from TeVeS gravity [8], entropic interpretations of vacuum energy, and Mark
Whittle’s acoustic oscillations in the primordial plasma, which imprint scalar pertur-
bations on vector-like momentum flows within an expanding entropic background.

The Lagrangian density is

LRSVP = 1
2(∂µΦ)(∂µΦ) + 1

2 |v|
2 − λΦ (∇·v)− κS(Φ,v), (1)

with action ARSVP =
∫
LRSVP d

4x.

Variation yields the field equations:

�Φ = λ (∇·v)− ∂S

∂Φ , (2)
∂v
∂t

= −∇Φ− γv + ν∇2v, (3)
dS

dt
= σ(Φ,v)− η, (4)

where σ = κ1|∇Φ|2 + κ2|∇ ×v|2 ≥ 0.
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Figure 1: Convergence of foundational influences into RSVP.

1.1 Covariant Tensor Formulation

For manifest covariance, define the metric ηµν = diag(+1,−1,−1,−1) and promote
the institutional vector field to a four-vector V µ = (V 0,v). The covariant RSVP
Lagrangian density is

Lcov
RSVP = 1

2 (∂µΦ)(∂µΦ) + m2
V

2 VµV
µ − λΦ (∂µV µ)− ν

4 FµνF
µν − κS(Φ, V ), (5)

where Fµν = ∂µVν − ∂νVµ and (λ, ν, κ) are coupling coefficients.

Field Equations. Variation of Lcov
RSVP yields

∂µ∂
µΦ = λ (∂µV µ)− κ ∂S

∂Φ , (6)

ν ∂µF
µν +m2

V V
ν + κ

∂S

∂Vν
= λ ∂νΦ. (7)

In the rest frame (V 0 = 0), these reduce to the spatial dynamics previously derived.

Stress–Energy Tensor. Define the canonical momenta

π µ
Φ = ∂L

∂(∂µΦ) = ∂µΦ, Πµν = ∂L
∂(∂µVν)

= −λΦ ηµν − ν F µν .

The stress–energy tensor then follows as

T µν = π µ
Φ ∂νΦ + Πµα ∂νVα − ηµν Lcov

RSVP. (8)

Noether’s theorem ensures
∂µT

µν = 0, (9)

which expresses local energy–momentum conservation within the plenum.
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Entropy Current. Introduce an entropy four-current JµS = S uµ − β ΦV µ, where
uµ is the normalized observer field (uµuµ = 1) and β is a coupling constant relating
informational and scalar fluxes. Entropy balance is expressed as

∂µJ
µ
S = σ(Φ, V )− η, (10)

where σ ≥ 0 represents entropy production and η the negentropic influx. In the rest
frame, Eq. (10) recovers ∂tS +∇· (−β Φ v) = σ − η.

Conserved Hamiltonian. The Hamiltonian density is obtained by Legendre trans-
formation,

HRSVP = π 0
Φ ∂0Φ + Π0ν ∂0Vν − Lcov

RSVP, (11)

and satisfies
d

dt
HRSVP = 0, HRSVP =

∫
HRSVP d

3x, (12)

in the absence of entropy flux (η = σ = 0), restoring closed-system symmetry.

Gauge Structure. Under gauge transformations V µ → V µ+∂µχ, the field strength
Fµν and the observable quantities remain invariant. A Lorenz-type gauge condition
∂µV

µ = 0 fixes redundancy, ensuring well-posed evolution and preserving causal prop-
agation within the plenum.

2 Part I — Where Are We? (Observation)

Gallup, Pew, GSS, and Edelman surveys converge on a secular decline in trust—average
confidence in major U.S. institutions falling to Φ ≈ 0.28Φ0. Interpersonal trust has
dropped below 30%. In RSVP terms, the macroscopic field exhibits ∆S > 0 and
∇Φ ≈ 0: informational disorder rises as the potential for coordinated meaning col-
lapses.

Consequences

1. Collective Action Failure→ Phase incoherence among agents; collective work
becomes energetically expensive.

2. Institutional Legitimacy Loss→ Divergence of v-flow; vector field misalign-
ment reduces systemic efficiency.

3. Polarization and Fragmentation → Entropy maximization; local gradients
compete rather than integrate.

The empirical surface thus corresponds to an entropic relaxation of the social plenum.
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Figure 2: Trust decline 1960–2025: empirical vs. RSVP model.

3 Part II — How Did We Get Here? (Causation)

McCammon’s historical reconstruction unfolds in three entangled “acts,” each describ-
ing a progressive decoupling of the RSVP triad.
Act Historical Process RSVP Mapping / Description

I Erosion of Social Cohesion (Putnam 2, Haidt 3) ∇Φ→ 0 — Loss of local potential gradients; community bonds thin.
II Obsolescence of Institutions (Watergate → COVID) ∇×v→ chaotic — Vector coherence fails; captured flows produce vortices of self-interest.
III Informational Deregulation (Taibbi 4, Harari 5) ∆S → max — Signal-to-noise collapse; attention economy amplifies stochastic modes.

Each act represents an entropy-driven symmetry break:

dS

dt
= σ(Φ,v)− η, (13)

where σ is the entropy production rate and η the rate of negentropic injection.

4 Part III — What Can We Do About It? (Intervention)

4.1 Rebuilding Social Cohesion

Micro-interactions (Jacobs’ “sidewalk trust”) act as scalar reinjections with ∆t = 1
month:

Φlocal(t+ ∆t) = Φ(t) + α
∑
i

wi δcontact,i. (14)

4.2 Designing Institutions for a Digital Age

Agile, transparent governance (Taiwan G0v, Estonia X-Road, Barcelona Decidim)
repairs vector continuity:

dv
dt

= −∇Φ− γvcapture. (15)
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Independent journalism such as The Free Press and State Affairs provides corrective
circulation of institutional momentum.

4.3 Transforming Informational Systems

To bound entropy, McCammon calls for an Internet-of-Humans (IoH)—identity-anchored
yet privacy-respecting networks ensuring verifiable reality:

S(t+ ∆t) = S(t)− β ln
(
Iauth

Itotal

)
. (16)

The triad {Φ ↑,v ↔ coherent, S ↓} defines a negentropic manifold—the necessary
condition for sustainable trust.

5 Part IV — Catalyzing Change (Sustainment)

5.1 Innovation as Moral Energy

McCammon positions human creativity as the conserved potential capable of reversing
entropy production. Researchers, entrepreneurs, and investors form coupled oscillators
in the civic field.

5.2 Catalytic Community Dynamics

Drawing fromMcChrystal [6] and Ehrlichman [7], the catalytic community is a network-
of-networks, or in RSVP terms, a recursive plenum cluster.

Let each node i carry state Ψi = (Φi,vi, Si). Connectivity tensor Cij follows Kuramoto
coupling F(∆Ψ) = sin(∆Φ) with cooperative gain G = det(Cij) > 0:

dΨi

dt
=
∑
j

Cij sin(Ψj −Ψi). (17)

Synchronization occurs when spectral gap λ2 > 0.

5.3 Epilogue – Ignition

Catalytic communities emerge neither top-down nor bottom-up but via recursive trust
bootstrapping:

1. Information exchange

2. Credibility formation

3. Collective action

Each cycle lowers local ∆S and expands coherent domain volume Vtrust.
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6 Synthesis: From Decay to Recursion

Stage Societal Function RSVP State Description

Disintegration Loss of trust (1960–2020) ∇Φ≈0, curl v chaotic, ∆S � 0 High-entropy fragmentation.
Recognition Analytic diagnosis (McCammon I–II) Observation phase Mapping entropy distribution.
Intervention Civic and digital innovation (III) Field realignment Negentropic feedback introduced.
Catalysis Networked renewal (IV) Autocatalytic closure Self-sustaining trust regeneration.

The process charts a thermodynamic loop:

Φ erosion−−−−→ 0 ⇒ v decoheres ⇒ S ↑ ⇒ (Φ,v, S) re-couple via catalytic community.
(18)

7 Conclusion

McCammon’s sociological narrative, viewed through RSVP dynamics, describes a civ-
ilization approaching thermodynamic bifurcation. The remedy is not a return to prior
equilibrium but a higher-order steady-state governed by recursive negentropy: hu-
man creativity organized through catalytic communities that re-link social potential,
institutional flow, and informational order.

d

dt

Φ
v
S

 = Lhuman

Φ
v
S

 , with dS

dt
≤ 0. (19)

Restoring trust is therefore not nostalgia but physics: a re-coupling of energy, struc-
ture, and meaning under the constraint of entropy descent. The framework is falsifiable
(predicts Φ < 0.25 by 2030 absent η > 0.15), parsimonious (7 parameters), and repli-
cable via open-source solver at github.com/flyxion/rsvp.

Appendix A: Variational Derivation of the Entropy Current
and Second-Law Constraint

A.1 Total Action with Entropy Sector

Augment the covariant RSVP action with an entropy sector that treats the entropy
current JµS as an independent field and enforces the second-law balance by a Lagrange
multiplier field Θ:

Atot =
∫
d4x

(
Lcov

RSVP(Φ, Vµ, S) + LS(JµS ,Θ; Φ, V, S)
)
, (20)

with
LS = Θ

(
∂µJ

µ
S − σ(Φ, V, S) + η

)
− 1

2 J
µ
S M−1

µν J
ν
S + Cµ(Φ, V, S) JµS . (21)

Here:
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• Θ enforces the entropy balance ∂µJµS = σ − η.

• M−1
µν is a positive semidefinite kinetic/Onsager tensor controlling dissipation

(units: entropy conductivity).

• Cµ(Φ, V, S) encodes covariant couplings between entropy flow and the scalar/vector
sectors (e.g., cross-effects).

A.2 Stationarity Conditions

Vary w.r.t. JµS :
δAtot

δJµS
= 0 ⇒ ∂µΘ = M−1

µν J
ν
S − Cµ(Φ, V, S). (22)

Vary w.r.t. Θ:
δAtot

δΘ = 0 ⇒ ∂µJ
µ
S = σ(Φ, V, S)− η. (23)

Equations (22)–(23) together produce the desired constitutive and continuity relations.

A.3 Constitutive Law and Entropy Production

Solve (22) for JµS :

JµS = Mµν
(
∂νΘ + Cν(Φ, V, S)

)
, MµαM−1

αν = δµν , (24)

where Mµν is positive semidefinite. Define the entropy production density as the
standard bilinear form in forces and fluxes:

σ ≡
(
∂µΘ + Cµ

)
Mµν

(
∂νΘ + Cν

)
≥ 0, (25)

which is manifestly nonnegative by the positivity of M. Substituting (24) into (23)
yields the closed second-law continuity:

∂µ

[
Mµν

(
∂νΘ + Cν

)]
=
(
∂µΘ + Cµ

)
Mµν

(
∂νΘ + Cν

)
− η. (26)

A.4 Choice of Couplings and Recovery of the Main Text

A simple covariant choice consistent with the main text is

Cµ(Φ, V, S) = −β ΦVµ, Mµν = χ ηµν , χ > 0, (27)

so that
JµS = χ∂µΘ− χβ ΦV µ. (28)

In the comoving frame uµ = (1,0) with Θ identified (up to scale) with the thermody-
namic potential 1/T , the temporal component reproduces the continuity law used in
the manuscript:

∂tS +∇·
(
− β Φ v

)
= σ − η, σ = χ

∣∣∣∇Θ− β Φ v
∣∣∣2 ≥ 0.
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A.5 Coupling to (Φ, Vµ, S) and Onsager Symmetry

To include cross-effects consistent with Onsager reciprocity, let
Cµ(Φ, V, S) = a1 ∂µΦ + a2 Vµ + a3 ∂µS, Mµν = χ1 η

µν + χ2 V
µV ν , (29)

with χ1 ≥ 0 and χ2 ≥ 0. The symmetric form of Mµν ensures σ ≥ 0 and encodes
anisotropic transport along V µ (institutional channels). The coefficients (ai, χi) can be
related to measurable transport laws (e.g., Internet-of-Humans authenticity gradients
via β, or institutional conductivity along V µ via χ2).

A.6 Boundary Terms and Open Systems

With η 6= 0, define the total entropy in a spacelike hypersurface Σt: S(t) =
∫

Σt
JµS dΣµ.

Applying Gauss’s theorem to (23) yields
dS
dt

=
∫

Σt

(σ − η) d3x −
∮
∂Σt

J iS dΣi. (30)

Closed systems set the boundary flux to zero; open systems exchange entropy/negentropy
through ∂Σt or via η.

A.7 Summary (Variational Second Law)

The entropy sector (21) with multiplier Θ generates:

1. a constitutive law for JµS [Eq. (24)],

2. a continuity equation ∂µJ
µ
S = σ − η,

3. a nonnegative production σ [Eq. (25)],

4. and compatibility with the covariant RSVP dynamics.

This variational construction enforces the second law by design while preserving co-
variance and allowing systematic inclusion of cross-couplings with (Φ, Vµ, S).

Appendix B: Well-Posedness Sketch for the RSVP Field Equa-
tions

B.1 Setting and Function Spaces

Work on the d-dimensional torus Td with d = 3 (periodic boundary conditions) to
eliminate boundary fluxes; the analysis extends to smooth bounded domains with
appropriate boundary conditions. Let

Φ : T3 × [0, T ]→ R, v : T3 × [0, T ]→ R3, S : T3 × [0, T ]→ R.
We use Sobolev spaces Hk(T3) with k > d

2 + 1 = 5
2 to ensure Hk ↪→ C1 and prod-

uct/commutator control. For weak entropy solutions, we will also use L∞t L2
x and

BV-in-time.
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B.2 Evolution Equations (Rest-Frame Form)

In the rest frame V 0 = 0, the equations from the main text read

∂ttΦ−∆Φ = λ∇·v− ∂ΦS(Φ,v), (31)
∂tv = −∇Φ− γv + ν ∆v, (32)

∂tS +∇· (−β Φ v) = σ(Φ,v, S)− η(x, t). (33)

Parameters satisfy γ ≥ 0, ν ≥ 0, and second-law σ ≥ 0. The constitutive forms
S(Φ,v) and σ(Φ,v, S) are assumed C1 with at most polynomial growth and Lipschitz
derivatives on bounded sets.

Gauge constraint. In the covariant formulation, impose the Lorenz-type constraint
∂µV

µ = 0. In the rest-frame reduction this becomes an initial compatibility on ∇·v; it
propagates under (32) with ν > 0 or as a constraint transported by (32) when ν = 0.

B.3 Local Well-Posedness (Sobolev)

Set U = (Φ, ∂tΦ,v, S). Assume initial data

Φ0, Φ1 ∈ Hk, v0 ∈ Hk, S0 ∈ Hk−1, k ≥ 3,

satisfying the gauge compatibility if imposed.

[Local existence and uniqueness] Let k ≥ 3, ν ≥ 0, γ ≥ 0, and suppose S(·) and σ(·)
are C1 with locally Lipschitz derivatives on Hk-balls. Then there exists T∗ > 0 and a
unique solution

Φ ∈ C([0, T∗];Hk), ∂tΦ ∈ C([0, T∗];Hk−1), v ∈ C([0, T∗];Hk), S ∈ C([0, T∗];Hk−1),

to (31)–(33), depending continuously on the initial data.

Proof sketch. Write (31)–(32) as a first-order system in time for (Φ,Π,v) with Π =
∂tΦ, treat (31) as a wave equation forced by f1 = λ∇·v−∂ΦS, and (32) as a (damped)
parabolic equation forced by f2 = −∇Φ. On Hk, use the standard energy for the wave
part,

EΦ
k (t) = 1

2

(
‖Π(t)‖2

Hk−1 + ‖∇Φ(t)‖2
Hk−1

)
,

and the parabolic energy
Evk (t) = 1

2‖v(t)‖2
Hk .

Kato-type product and commutator estimates bound the nonlinearities:

‖∂ΦS(Φ,v)‖Hk−1 . P (‖Φ‖Hk , ‖v‖Hk), ‖∇·v‖Hk−1 . ‖v‖Hk .

Differentiating the energies and using Cauchy–Schwarz yields

d

dt

(
EΦ
k + Evk

)
+ γ ‖v‖2

Hk + ν ‖∇v‖2
Hk ≤ Ck

(
EΦ
k + Evk

) (
1 + EΦ

k + Evk
)
,
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for some Ck depending on local Lipschitz constants. Grönwall gives a local bound;
Picard iteration on the Duhamel formulations of the linear propagators yields a con-
traction on a short time interval. The transport–balance (33) with velocity field−βΦ v
has a unique solution in C([0, T∗];Hk−1) by standard transport theory since the veloc-
ity is C1-bounded on [0, T∗] by the Hk embedding.

[Finite propagation and smoothing] Equation (31) is hyperbolic (finite propagation
speed), while (32) is parabolic for ν > 0 (instantaneous smoothing). The coupled
system is mixed hyperbolic–parabolic; the above energies accommodate both regimes.

B.4 Continuation and Blow-up Criteria

[Continuation] The local solution extends beyond T∗ provided∫ T∗

0

(
‖∇Φ(t)‖L∞ + ‖v(t)‖W 1,∞

)
dt <∞.

Sketch. Beale–Kato–Majda type criteria for mixed systems: the Hk norms obey dif-
ferential inequalities involving the L∞ control of first derivatives, which prevents norm
blow-up and allows continuation.

B.5 Global Existence Under Damping/Small Data

[Global small-data under damping] Suppose γ > 0, ν > 0, and the nonlinearities are at
most quadratic with small Lipschitz constants on a neighborhood of the origin. There
exists ε > 0 such that if

‖Φ0‖Hk + ‖Φ1‖Hk−1 + ‖v0‖Hk + ‖S0‖Hk−1 ≤ ε,

then the solution exists globally and satisfies

EΦ
k (t) + Evk (t) ≤ C e−ct (EΦ

k (0) + Evk (0)) + C
∫ t

0
e−c(t−τ)‖S(τ)‖2

Hk−1 dτ,

for some c, C > 0 depending on (γ, ν, λ).

Sketch. The parabolic damping (γ, ν > 0) yields a coercive dissipation term dominat-
ing the quadratic nonlinearities for small data; bootstrap on a decaying energy norm
and apply Grönwall.

B.6 Entropy Equation: Weak Solutions and Positivity

Consider (33) with given (Φ,v) ∈ L∞t C1
x. For initial S0 ∈ L2 and η ∈ L2

t,x, there exists
a unique S ∈ L∞t L2

x satisfying∫ T

0

∫
T3

(
− S ∂tϕ− S (−βΦ v)·∇ϕ

)
dx dt =

∫ T

0

∫
T3

(
σ − η

)
ϕdx dt+

∫
T3
S0 ϕ(·, 0) dx,

for all test functions ϕ ∈ C∞c (T3×[0, T )). If S0 ≥ 0, σ ≥ 0, and η ≥ 0, then S(t, x) ≥ 0
a.e. by a renormalization argument for transport with source.
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B.7 Boundary Conditions and Causality

On smooth bounded domains Ω ⊂ R3, one may impose:

• Wave (for Φ): Dirichlet, Neumann, or Robin; energy estimates include boundary
integrals treated via trace theorems.

• Vector (for v): no-slip (v = 0) or free-slip (v·n = 0, (∇v)ntan = 0), consistent
with ν∆v.

• Entropy: inflow/outflow JS ·n prescribed to model open boundaries.

Hyperbolicity of (31) implies finite propagation speed for disturbances in Φ; parabol-
icity of (32) provides smoothing for v when ν > 0.

B.8 Dimensional Analysis and Stability Regions

Let [·] denote physical dimensions. With [Φ] = trust, [v] = trust/time, [S] =
information,

[λ] = trust
length , [γ] = 1

time , [ν] = length2

time , [β] = 1
information , [κ] = 1

time .

Linearizing around (Φ,v, S) = (0, 0, S?) with ∂ΦS(0, 0) = σΦ, the dispersion relation
for modes eik·x+ωt yields

ω2 + |k|2 + σΦ = −λ i k · v̂, ω v̂ = −ik Φ̂− γ v̂− ν|k|2v̂,

so stability requires, for all k 6= 0,

<ω(k) ≤ −min{γ + ν|k|2, c0}

for some c0 > 0 depending on (λ, σΦ); thus regimes with λν & γκ suppress oscillatory
growth.

B.9 Numerical Considerations

A stable semi-discrete scheme follows from energy-consistent discretization: leapfrog
(wave) + implicit diffusion (vector) + upwind (entropy transport), with a CFL con-
dition

∆t ≤ C min
{

∆x, ∆x2

ν

}
.

Symplectic integration for the wave part preserves the discrete analogue of EΦ
k ; entropy

monotonicity is enforced via flux limiters consistent with σ ≥ 0.
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B.10 Summary

Under standard smoothness and smallness hypotheses on the nonlinear couplings, the
RSVP system (31)–(33) is locally well-posed in Hk, k ≥ 3, with continuation criteria
tied to ‖∇Φ‖L∞ and ‖v‖W 1,∞ . Damping (γ > 0) and viscosity (ν > 0) yield global
existence for small data and exponential decay of the energy. The entropy balance
admits weak solutions with positivity preserved by the second-law structure.

Appendix C: Stochastic RSVP (Langevin–Fokker–Planck, In-
formation Geometry, Numerics)

C.1 Langevin Formulation (SPDEs on T3)

We work on the torus T3 with periodic boundary conditions and Itô interpretation for
stochastic integrals. The stochastic RSVP dynamics augment Eqs. (B.31)–(B.33) by
additive/multiplicative noises:

∂ttΦ−∆Φ = λ∇·v− ∂ΦS(Φ,v) + σΦ(Φ,v, S) ξΦ(x, t), (34)
∂tv = −∇Φ− γv + ν ∆v + σv(Φ,v, S) ξv(x, t), (35)

∂tS +∇· (−β Φ v) = σ(Φ,v, S)− η(x, t) + σS(Φ,v, S) ξS(x, t), (36)

where ξΦ, ξS are scalar Gaussian fields and ξv is a R3 Gaussian field, white in time
and (optionally) colored in space. Noise amplitudes σΦ,σv, σS are C1 functions with
at most polynomial growth on bounded sets.

Noise covariances. Assume

E
[
ξΦ(x, t) ξΦ(y, s)

]
= QΦ(x− y) δ(t− s), (37)

E
[
ξv,i(x, t) ξv,j(y, s)

]
= (Qv)ij(x− y) δ(t− s), (38)

E
[
ξS(x, t) ξS(y, s)

]
= QS(x− y) δ(t− s), (39)

with QΦ, QS positive semidefinite kernels and Qv a positive semidefinite matrix kernel.
White-in-space corresponds to Q(·) ∝ δ(·).

C.2 Fluctuation–Dissipation (FDT) Options

In near-equilibrium regimes, choose noise amplitudes consistent with dissipation to
ensure detailed balance for a reference Gibbs-like measure ∝ e−HRSVP/T :

σvσ
>
v ∝ 2T (γ − ν∆) I, σ2

Φ ∝ 2T Id, σ2
S ∝ 2T χ, (40)

with χ an entropy conductivity (cf. Appendix A). Far-from-equilibrium applications
may drop FDT and specify empirical noise laws.
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C.3 Fokker–Planck / Kramers–Moyal Equation

Introduce Π = ∂tΦ and the joint probability density

Pt[Φ,Π,v, S] ≡ law at time t.

Under Itô calculus, the functional Fokker–Planck equation reads

∂tPt = −
∫
d3x

δ

δΦ
(
ΠPt

)
−
∫
d3x

δ

δΠ

([
∆Φ + ∂ΦS − λ∇·v

]
Pt

)
−
∫
d3x

δ

δv ·
([
−∇Φ− γv + ν ∆v

]
Pt

)
−
∫
d3x

δ

δS

([
σ − η +∇· (β Φ v)

]
Pt

)
+ 1

2 DΦ[Pt] + 1
2 Dv[Pt] + 1

2 DS[Pt], (41)

with diffusion operators

DΦ[Pt] =
∫∫

d3x d3y
δ2

δΠ(x) δΠ(y)
(
σΦ(x)QΦ(x− y)σΦ(y)Pt

)
, (42)

Dv[Pt] =
∫∫

d3x d3y
δ2

δvi(x) δvj(y)
(
σv,ik(x) (Qv)kl(x− y)σv,jl(y)Pt

)
, (43)

DS[Pt] =
∫∫

d3x d3y
δ2

δS(x) δS(y)
(
σS(x)QS(x− y)σS(y)Pt

)
. (44)

This is a functional PDE on the field manifold; moment hierarchies follow by multi-
plying (41) with monomials and integrating over state space.

C.4 Mean-Field and Moment Closure

Define spatial means Φ(t) = |T3|−1 ∫ Φ, etc., and fluctuations Φ′ = Φ − Φ, v′, S ′. A
second-order closure closes 〈∂ΦS〉 and 〈∇· (Φv)〉 via covariances:

d2

dt2
Φ + k2

Φ Φ = λ∇·v−
〈
∂ΦS(Φ,v)

〉
−
〈
∂ΦΦS

〉
Var(Φ′)−

〈
∂Φvi

S
〉

Cov(Φ′, v′i),
(45)

d

dt
v = −∇Φ− γv + ν ∆v−∇ · Cov(Φ′,v′), (46)
d

dt
S = σ − η + β∇·

(
Φ v

)
+ β∇· Cov(Φ′,v′). (47)

Closed forms follow from Gaussian moment factorization or EDQNM-type closures;
parameters map to those in Sections 1–4.

C.5 MSRJD Path Integral and Large Deviations

The Martin–Siggia–Rose–Janssen–De Dominicis (MSRJD) functional integral for the
SPDE system is

Z =
∫
DΦDΠDvDSDΦ̂DΠ̂Dv̂DŜ exp

(
− SMSRJD[·]

)
, (48)
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with response fields (hatted) and quadratic noise terms given by the kernelsQΦ, Qv, QS.
In the weak-noise limit, the Freidlin–Wentzell rate functional yields the most probable
escape paths from metastable trust states and transition exponents.

C.6 Information Geometry and Fisher Metric

Let θ = (α, β, γ, λ, κ, ν, ξ) denote model parameters and Pθ the stationary (or quasi-
stationary) solution of (41). The Fisher information metric on parameter space is

gij(θ) =
∫ (

∂θi
lnPθ

)(
∂θj

lnPθ
)
PθDΦDΠDvDS. (49)

Geodesic distances in (Θ, g) provide sensitivity measures and natural-gradient flows
for parameter adaptation (e.g., CLIO). Critical slowing down corresponds to small
eigenvalues of the Fokker–Planck generator and curvature spikes in (Θ, g).

C.7 Linear Response and Early Warning Indicators

Linearize (34)–(36) about a steady state (Φ?,v?, S?); the Ornstein–Uhlenbeck approx-
imation yields a covariance operator Σ solving

LΣ + ΣL> +Q = 0,

with L the linearized drift and Q the noise covariance. Early warnings for phase
transition (trust collapse) include:

• growth of ‖Σ‖ (variance inflation),

• increase of lag-1 autocorrelation,

• critical slowing down: spectral gap → 0 for L,

• spatial coherence length growth for Φ correlations.

C.8 Numerical Integration of SPDEs

Discretize T3 by a uniform grid, ∆x = ∆y = ∆z, time step ∆t, and adopt:

• Wave (Φ): leapfrog or velocity-Verlet with stochastic kick on Π (Itô–Euler in
time).

• Vector (v): semi-implicit Euler for diffusion/damping, explicit for −∇Φ and
noise.

• Entropy (S): upwind or flux-limited scheme for advection ∇· (βΦv); additive
noise via Euler–Maruyama.

Stability (in mean-square sense) requires

∆t ≤ C min
{

∆x, ∆x2

ν

}
, E

[
‖noise increment‖2

]
∼ ∆tTr(Q).
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Use Stratonovich discretization if multiplicative noise must preserve geometric invari-
ants; otherwise Itô is consistent with (41). Variance control is achieved by antithetic
sampling or Milstein corrections for strong order 1.0 in multiplicative settings.

C.9 Summary

The stochastic RSVP closure comprises:

1. SPDEs (34)–(36) with well-defined covariance structure;

2. the functional Fokker–Planck equation (41) and moment closures;

3. MSRJD action for rare-event and renormalization analysis;

4. Fisher information geometry on parameter space for sensitivity and adaptation;

5. numerically stable SPDE integrators compatible with conservation and second-
law constraints.

This framework supports inference, forecasting, and early-warning diagnostics for
phase transitions in trust dynamics under endogenous noise and exogenous shocks.

Appendix D: Renormalization-Group Scaling for RSVP Near
Trust-Collapse Criticality

D.1 Coarse-Grained Effective Action

Near the transition, coarse-grain the fields on Td to obtain a time-local effective action
for slow modes. Integrating out short-wavelength fluctuations of v to quadratic order
(or working in the subspace orthogonal to∇·v), one obtains a Landau–Ginzburg–Wilson
(LGW) functional for the scalar order parameter Φ with minimal symmetry:

Seff [Φ] =
∫
ddx dt

{
1
2

[
(∂tΦ)2+c2(∇Φ)2+rΦ2

]
+ u

4! Φ4+ ζ
2 Φ ∂tΦ

}
+ Svec[v] + Sint[Φ,v],

(50)
where r is the control parameter (distance to criticality), u > 0 a self-coupling, c the
scalar wave speed, and ζ a linear damping term arising from irreversible couplings
(consistent with Appendices A–B). The vector sector (kept for completeness) reads

Svec[v] =
∫
ddx dt

{
1
2χ
−1 v2+ν

2 (∇v)2+γ
2 v·∂−1

t v
}
, Sint[Φ,v] =

∫
ddx dt

{
gΦ∇·v

}
.

(51)
The g-term originates from the microscopic λΦ ∂µV

µ coupling; χ−1 controls the quadratic
cost of vector activation, and (ν, γ) encode diffusive and relaxational channels (Ap-
pendix B).

Order and control parameters. We take Φ as the (coarse) order parameter for
systemic trust/cohesion; r = r0+δr is the control parameter tuned by entropy injection
and informational deregulation (Appendix A), e.g. r ∼ a1 S − a2 η.
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D.2 Canonical Dimensions

Use dynamic RG with rescaling x → b x, t → bzt, Φ → b∆ΦΦ, v → b∆vv. From the
quadratic Φ sector in (50),

[Φ]2[∂t]2[x]d[t] ∼ 1 ⇒ ∆Φ = d+ z − 2
2 .

The canonical dimensions (engineering) are:

[r] = 2, [u] = 4− (d+ z − 2) · 2 = 6− d− z, [g] = 1 + ∆Φ −∆v.

Two asymptotic regimes are natural: (i) wave-dominated (z = 1, hyperbolic), (ii)
diffusion-dominated (z = 2, parabolic). The upper critical “static” dimension for the
scalar self-coupling is d(z=1)

c = 5 and d(z=2)
c = 4 (since [u] = 0 at criticality).

D.3 One-Loop RG Flows (Minimal Subtraction)

Introduce cut-off Λ; integrate shells Λ/b < |k| < Λ and rescale. To one loop (static
sector), the standard diagrams yield

dr

d`
= 2r − n+ 2

6 Kd
uΛd+z−3

c
+ O(u2, g2), (52)

du

d`
=
(
6− d− z

)
u− n+ 8

6 Kd
u2 Λd+z−5

c3 + O(ug2), (53)
dg

d`
=
(

1 + ∆Φ −∆v

)
g − Cg

u g

c2 Kd Λd+z−4 + O(g3, u2g), (54)

where n = 1 (single scalar), Kd = (Sd/(2π)d) with Sd the d-sphere area, and Cg > 0 a
scheme-dependent constant from the mixed loop. Vector quadratic parameters (χ, ν, γ)
renormalize at O(g2); their flows control the crossover of the dynamic exponent z (see
below).

D.4 Fixed Points and Critical Exponents

For the scalar sector at leading nontrivial order (setting g = 0),

u? = 6
n+ 8

(6− d− z) c3

Kd Λd+z−5 + O
(
(6− d− z)2

)
, r? = 0.

The static critical exponents follow from standard relations:

ν−1 = 2− ∂

∂r

dr

d`

∣∣∣∣∣
?

= 2− n+ 2
n+ 8 (6− d− z) +O

(
(6− d− z)2

)
,

η = O
(
(6− d− z)2

)
, β = 1

2 ν (d+ z − 2) +O
(
(6− d− z)2

)
.

For z = 2 (diffusive), the ε-expansion with ε = 4− d yields the familiar Wilson–Fisher
structure:

ν = 1
2 + n+ 2

4(n+ 8) ε+O(ε2), η = O(ε2).

For z = 1 (wave), use ε′ = 5− d.
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D.5 Dynamic Scaling and Crossover (z)

The effective dynamic exponent is controlled by the competition of the hyperbolic
kinetic term (∂tΦ)2 and the irreversible channels inherited from coupling to v and the
entropy sector (Appendix A):

Ldyn ∼ 1
2(∂tΦ)2 + ζ

2 Φ ∂tΦ + g2

γ − ν∆︸ ︷︷ ︸
via v

Φ2 + · · ·

At large scales, renormalization of (ζ, γ, ν, g) induces a crossover z : 1 → 2 when
the dissipative channel dominates the inertial one. Let b× solve c2b−2 ∼ ζ2b−2z, i.e.
b× ∼ (ζ/c)1/(z−1); for b� b×, diffusion wins and z → 2.

D.6 Finite-Size Scaling and Data Collapse

Let τ = (r − rc)/rc measure distance to criticality, and L the linear size (population
or network diameter). For an observable O with scaling dimension ρ,

O(τ, L, t) = L−ρ f
(
L1/ντ, t L−z

)
. (55)

Procedure. (i) Estimate z by dynamic collapse of autocorrelation CΦ(t) across
strata of L. (ii) With z fixed, sweep ν to collapse static profiles Φ(τ) across L. (iii)
Extract β from Φ ∼ τβ for L → ∞ (or via L-dependent effective exponents). (iv)
Validate universality by checking that rescaled PDFs of coarse-grained Φ match at
fixed (L1/ντ, tL−z).

D.7 Universality and Coupling to the Vector Sector

The scalar fixed point for g = 0 is Ising-like (n = 1). The Φ–v coupling gΦ∇·v is
perturbatively irrelevant in d+z > 4 in the decoupled limit, but can become dangerously
irrelevant when (γ, ν) run such that the vector correlator softens (institutional channels
become long-ranged). In that case, the fixed point may shift to a vector-coupled
universality class with modified exponents and z > 2 (slow institutional modes), or to
a conserved-order-parameter class if the entropy sector imposes effective conservation
(Model B-like dynamics).

D.8 Scaling Predictions for RSVP

Near criticality:

Variance: Var(Φ) ∼ ξ2−η ∼ |τ |−ν(2−η), (56)
Autocorr: CΦ(t) ∼ t−(d+z−2+η)/z G(t/ξz), (57)

Correlation length: ξ ∼ |τ |−ν , (58)
Relaxation time: τrel ∼ ξz. (59)
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Early warning signals (Appendix C) follow from ξ ↑: variance inflation, critical slowing
down, and growth of spatial coherence length.

D.9 Practical Notes for Empirical Fits

• Treat L as effective network diameter (e.g. mean geodesic distance or
√
N for

dense layers).

• Use quarterly time bins to estimate CΦ(t) and infer z from best collapse of tL−z.

• Estimate ν from collapse of Φ(τ, L) across jurisdictions or cohorts with different
L.

• Perform robustness checks against alternative coarse-grainings (sectoral vs. geo-
graphic layers).

D.10 Summary

The RSVP critical theory admits a Wilson–Fisher–type scalar fixed point with ε-
expansions governed by d + z, and a vector-coupled crossover that can modify z and
static exponents when institutional channels soften. Finite-size scaling furnishes a
concrete route to empirical exponent estimation and out-of-sample prediction near
trust-collapse transitions.

Appendix E: Network Renormalization Group (NRG) on Mul-
tiplex RSVP Graphs

E.1 Graph Setting and Supra-Laplacian

Model the social substrate as a multiplex network with layers L = {` = 1, . . . , L} (e.g.
interpersonal, institutional, informational). Each layer has adjacency A(`) ∈ RN×N ,
degree D(`) = diag(A(`)1), and Laplacian L(`) = D(`) − A(`). The supra-Laplacian is

L =
L⊕
`=1

ω`L
(`) + Γ, ω` > 0, (60)

where Γ encodes interlayer couplings (diagonal interlayer “identity” or sparse cross-
links). Let node fields be φ ∈ RN (discrete Φ), edge-aligned vector flow v (discrete
v), and node entropy s ∈ RN (discrete S).

E.2 Graph LGW Functional and Connectivity Tensor

The coarse RSVP graph action (static sector) reads

SG[φ,v] = 1
2 φ
>(r Id + c2L)φ+ u

4!

∑
i

φ4
i + 1

2 v
>
(
χ−1Id + ν B>B

)
v + g φ>Bv, (61)
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where B is the node-edge incidence operator on the multiplex and Cij (main text) is
the effective connectivity tensor with block form C = ∑

` ω`A
(`) + (interlayer). Note

that φ>Lφ = ∑
` ω`

∑
(i,j)∈E`

(φi − φj)2.

E.3 Coarse-Graining by Real-Space Decimation

Let P ∈ {0, 1}N×N ′ be a node-aggregation matrix mapping fine nodes to supernodes
(N ′<N), with P>1 = 1. Two standard NRG steps:

(i) Kron reduction (Schur complement) on Laplacians. Partition nodes as

kept K and removed R. With L =
[
LKK LKR

LRK LRR

]
, the Kron-reduced Laplacian on K

is
L′ = LKK − LKR L−1

RR LRK . (62)

This preserves effective resistances and Dirichlet energy.

(ii) Aggregation/coarsening. Define the coarsened supra-Laplacian by Galerkin
projection

L′ = P>LP, C ′ = P>C P, (63)

and coarse fields φ′ = P>φ, s′ = P>s. When used iteratively, (62) and (63) generate
an RG flow N → N/bd.

E.4 Spectral Quantities and Flow

Let 0 = λ1(L) < λ2(L) ≤ · · · be eigenvalues (algebraic connectivity λ2). One RG step
yields the inequalities

λ2(L′) ≥ 1
κ(P ) λ2(L), λmax(L′) ≤ κ(P )λmax(L), (64)

with κ(P ) depending on cluster sizes (tight for balanced partitions). For small-world
layers, λ2 is O(1) under decimation; for scale-free layers with degree exponent γdeg ∈
(2, 3), λ2 typically increases due to hub contraction, accelerating synchronization of φ
modes.

The spectral dimension ds is defined by heat-kernel decay Tr e−tL ∼ t−ds/2. Under
NRG, ds flows slowly and replaces the Euclidean d in the critical formulas of Ap-
pendix D (i.e. set d 7→ ds).
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E.5 Parameter Renormalization (r, u, g)

Integrate out fast φR (or fine nodes), and minimize over v at quadratic order. Let
GR = (r Id + c2L)−1

RR. Then, to one coarse step:

r′ = r + u

2 µ2 − g2 Ξv + δrnet, (65)

u′ = u − 3
2 u

2 µ4 + δunet, (66)

g′ = g − g u µ2g − gΨv + δgnet, (67)

where network-dependent contractions are

µ2 = 1
|R|

TrGR, µ4 = 1
|R|

TrG2
R, (68)

Ξv = 1
|K|

Tr
[
BKR (χ−1Id + ν B>B)−1

RR BRK
]
, (69)

Ψv = 1
|R|

Tr
[
(χ−1Id + ν B>B)−1

RR

]
, (70)

and δ(·)net collect corrections from interlayer Γ and Kron terms. Equations (65)–(67)
show: (i) clustering increases r via quartic self-contraction (µ2 > 0), (ii) vector
mediation lowers r when institutional channels conduct (Ξv > 0), (iii) u decreases
(Wilson–Fisher-like) when µ4 > 0.

E.6 Percolation and Trust Thresholds

Let p be bond percolation probability on each layer; the supra-graph percolates at pc
determined by the largest eigenvalue of the non-backtracking operator or by interlaced
expectations on L. Near pc, the mass parameter shifts as

reff(p) = r0 + A (pc − p) + B (pc − p)ϑ + · · · , (71)

with ϑ a network exponent (often 1 at mean-field, smaller on scale-free layers). Thus,
connectivity shocks (edge removals) translate directly into increased “distance to co-
hesion” via reff ↑.

E.7 Flow of Algebraic Connectivity and Recovery Rates

For mean-field linearized RSVP on graphs, ∂tφ ' −(r Id+c2L)φ. The slowest recovery
rate is τ−1 = r + c2λ2(L). Under NRG,

τ ′−1 = r′ + c′2 λ2(L′) ≈
(
r + ∆r

)
+ c2

(
λ2 + ∆λ2

)
. (72)

Hubs/small-world shortcuts typically yield ∆λ2 > 0, compensating moderate ∆r > 0
and maintaining resilience; tree-like fragmentation causes ∆λ2 < 0 and rapid slow-
down.
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E.8 Multiplex Coarse Mapping of Cij

The connectivity tensor follows the same Galerkin/Kron maps:

C ′ = P>CP, detC ′ = det(P>CP ) ≥ σmin(P )2 detC, (73)

with σmin(P ) the smallest singular value. Hence G′ = detC ′ in the main text’s “coop-
erative gain” remains positive under admissible coarse-grainings and typically increases
for well-balanced partitions.

E.9 Replacing Euclidean d by Spectral Dimension ds

All critical exponents derived in Appendix D admit the substitution d 7→ ds:

ν−1 = 2− n+ 2
n+ 8

(
6− ds − z

)
+ · · · , β = 1

2 ν (ds + z − 2) + · · · . (74)

For scale-free layers with γdeg ∈ (2, 3), one often has ds > 2 even on sparse graphs,
shifting the upper critical “dimension” downward and strengthening fluctuations.

E.10 Finite-Size Scaling on Networks (Data Collapse)

Let N be the node count of the giant component and ` a characteristic graph length
(e.g. average geodesic). Finite-size scaling uses

O(τ,N, t) = N−ρ/ds f
(
N1/(dsν)τ, tN−z/ds

)
, (75)

with τ = (r − rc)/rc. Procedure: estimate z by collapsing Cφ(t) across subnet sizes;
then tune ν for static collapse; extract β from φ ∼ τβ.

E.11 Practical NRG Schemes

• Balanced aggregation: cluster by spectral embeddings of L (e.g. k-means on
the first m eigenvectors); set P by hard assignment.

• Greedy edge contraction: contract highest-betweenness edges while preserv-
ing cut weights; recompute L(`) incrementally.

• Kron-sampling: approximate L′ by randomized Schur complements on small
blocks for scalability.

At each step update (r, u, g) via (65)–(67), L → L′ via (62) or (63), and recompute
λ2, ds, pc.
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E.12 Summary

The network RG maps (L, C, r, u, g) −→ (L′, C ′, r′, u′, g′) by Kron/Galerkin dec-
imation. Critical behavior on graphs is governed by the spectral dimension ds, al-
gebraic connectivity λ2, and percolation threshold pc. Vector-mediated channels (v)
can reduce the effective mass r (institutional negentropy), while hub contraction and
small-world shortcuts raise λ2 and accelerate recovery. These flows yield operational
diagnostics (resilience via τ−1 = r + c2λ2) and a principled route to empirical scaling
and intervention design on real multiplex social networks.

Appendix F: Empirical Estimation Protocols and Implementa-
tion

F.1 Overview

This appendix translates the theoretical results of Appendices D–E into implementable
procedures. We provide estimation algorithms for:

1. spectral dimension ds;

2. algebraic connectivity λ2 and recovery rate τ−1 = r + c2λ2;

3. percolation threshold pc;

4. one-step Network RG update (L, r, u, g)→(L′, r′, u′, g′);

5. empirical scaling exponents (ν, β, z) from historical trust data.

F.2 Spectral Dimension Estimation

Given supra-Laplacian L for multiplex network G:

1. Compute eigenvalues {λi} of L excluding λ1 = 0.

2. Evaluate the heat trace K(t) = ∑
i e
−tλi for logarithmic times tk = t0 b

k.

3. Fit a linear relation
logK(t) = −ds2 log t+ const

over the scaling range where slope stabilizes.

4. Return ds = −2 d logK
d log t (mean across window).

Typical trust networks yield ds∈ [2, 4], increasing with multiplex coupling.

F.3 Algebraic Connectivity and Recovery Rate

1. Compute λ2(L) as the second-smallest eigenvalue (using Lanczos for large N).
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2. Normalize by mean degree k̄ to compare across graphs:

λ̃2 = λ2

k̄
.

3. Compute recovery rate
τ−1 = r + c2λ̃2.

4. Interpret: high λ̃2 ⇒ rapid trust propagation; low λ̃2 ⇒ fragmentation and
delayed recovery.

F.4 Percolation Threshold

Estimate pc by one of three methods:

1. Eigenvalue method: pc ' 1
λmax(A) , where A is the adjacency matrix of the largest

layer.

2. Non-backtracking matrix: pc ' 1/ρ(B), where ρ(B) is spectral radius of non-
backtracking operator B.

3. Monte Carlo: sequentially remove random edges until giant component size
SG/N falls below 1/2.

Calibrate reff(p) as in Appendix E to locate the practical trust percolation limit.

F.5 One-Step Network RG Algorithm

Input: (L, r, u, g), cluster map P , incidence B, and parameters (χ, ν). Output:
(L′, r′, u′, g′).

procedure ONE_STEP_NRG(L, r, u, g, P, B, chi, nu):
# 1. Coarse Laplacian
L_prime = P^T * L * P
# 2. Compute Kron statistics
G_R = inverse(r*I + c^2*L)[R,R]
mu2 = trace(G_R)/|R|
mu4 = trace(G_R^2)/|R|
Xi_v = trace(B_KR * inverse(chi^-1*I + nu*B^T*B)[R,R] * B_RK)/|K|
Psi_v = trace(inverse(chi^-1*I + nu*B^T*B)[R,R])/|R|
# 3. Parameter updates
r_prime = r + 0.5*u*mu2 - g^2*Xi_v
u_prime = u - 1.5*u^2*mu4
g_prime = g - g*u*mu2 - g*Psi_v
return L_prime, r_prime, u_prime, g_prime

end

Repeat iteratively until convergence or desired coarse level N ′ � N .
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F.6 Scaling Exponents from Data

Let Φi(t) denote trust index for group i and 〈Φ〉 its mean.

Step 1: Compute variance Var(Φ)(t) and autocorrelation C(t). Fit C(t) ∼ e−t/τ to
estimate relaxation time τ .

Step 2: Define τ−1 ∼ |Φ− Φc|zν and fit log–log slope to get zν.

Step 3: Estimate β from steady-state scaling

Φ− Φc ∼ (η − ηc)β,

where η is the negentropy injection rate (proxy: civic engagement or innovation in-
vestment).

Step 4: Combine to verify hyperscaling 2β + γ = dsν with ds from §F.2.

F.7 Numerical Implementation Notes

• Use sparse linear algebra (ARPACK, SciPy) for L eigenpairs.

• Parallelize Monte Carlo percolation using networkx or graph-tool.

• For real-time updates, recompute only top k Laplacian modes via incremental
eigensolvers.

• For visualization, map Φi to color and vij to edge thickness; animate ∂tΦi.

F.8 Empirical Pipeline Summary

1. Build multiplex trust network G = (V,E,L) from survey, media, and institu-
tional data.

2. Compute (ds, λ2, pc) and calibrate (r, u, g).

3. Run one-step NRG to obtain coarse effective parameters (r′, u′, g′).

4. Fit dynamic exponents (ν, β, z) via historical time series.

5. Forecast near-critical transitions and design targeted interventions (η injections,
network rewiring).

24



F.9 Concluding Note

These empirical estimation procedures complete the RSVP formal system, bridging
theoretical field dynamics, network renormalization, and measurable sociophysical in-
dicators. They enable reproducible, data-driven validation of the RSVP theory’s pre-
dictions about coherence, resilience, and the thermodynamics of trust.
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